Note, while the problem below arose in ring theory (specifically, Euclidean domains), the proof itself is elementary, and so the title should not scare away any viewers. In fact, we boil the problem down to something which requires no knowledge of abstract algebra at all.
Problem: Show that the ring
Solution: An element of
So we have reduced this problem to proving there are infinitely many integer solutions to the equation
L = Flatten[Table[{i,j,i^2 - 2 j^2},{i,1,1000},{j,1,1000}], 1];
Select[L, (Abs[#[[3]] == 1])&]
Here we construct a table of all possible differences
{{1, 1, -1}, {3, 2, 1}, {7, 5, -1}, {17, 12, 1},
{41, 29, -1}, {99, 70, 1}, {239, 169, -1}, {577, 408, 1}}
i.e., the triple
Now we conjecture, if
Which is of course
Now we get a bunch of extra things for free: If there is any element
This proof is nice for two reasons. First, it uses the heavy machinery of algebraic structures to give elegant proofs of difficult-to-prove elementary statements (this is an algebraist’s dream). Second, when at a loss, we used a computer program to give us a leg up. It would have taken quite a while even to find the solution {17,12,-1}. But after spending two minutes writing a computer program, we got a definitive answer for all numbers up to a thousand. We were able to study the pattern, make a conjecture, and then finally proving the conjecture was trivial. The inspiration to see the pattern was the hard part.
Of course, one cannot always just “extrapolate” the solutions to difficult theorems by just looking at tables of numbers. There are plenty of open problems which have been validated by computers well into the hundred-thousand-digit numbers, but still remain unsolved in general. But as we have shown, computers can give one a nudge in the right direction, and if there’s nobody to provide a helpful hint (and no solution to look up online), the program provide the most efficient (perhaps, the most elegant) route to a solution.
Want to respond? Send me an email, post a webmention, or find me elsewhere on the internet.