Welcome to the 209th Carnival of Mathematics!

209 has a few distinctions, including being the smallest number with 6 representations as a sum of 3 positive squares:

\begin{aligned}209 &= 1^2 + 8^2 + 12^2 \\\ &= 2^2 + 3^2 + 14^2 \\\ &= 2^2 + 6^2 + 13^2 \\\ &= 3^2 + 10^2 + 10^2 \\\ &= 4^2 + 7^2 + 12^2 \\\ &= 8^2 + 8^2 + 9^2 \end{aligned}

As well as being the 43rd Ulam number, the number of partitions of 16 into relatively prime parts and the number of partitions of 63 into squares.

Be sure to submit fun math you find in October to the next carvinal host!

The Heidelberg Laureate forum took place, which featured lectures from renowned mathematicians and computer scientists, like Rob Tarjan and Avi Wigderson on the CS theory side, as well as a panel discussion on post-quantum cryptography with none other than Vint Cerf, Whitfield Diffie, and Adi Shamir. All the videos are on YouTube.

Tom Edgar, who is behind the Mathematical Visual Proofs YouTube channel, published a video (using manim) exploring for which $n$ it is possible to divide a disk into $n$ equal pieces using a straightedge and compass. It was based on a proof from Roger Nelsen’s and Claudi Alsina’s book, “Icons of Mathematics”.

The folks at Ganit Charcha also published a talk “Fascinating Facts About Pi” from a Pi Day 2022 celebration. The video includes a question that was new to me about interpreting subsequences of pi digits as indexes and doing reverse lookups until you find a loop.

Henry Segerman published two nice videos, including one on an illusion of a square and circle in the same shape, and a preview of a genus-2 holonomy maze (Augh, my wallet! I have both of his original holonomy mazes and my houseguests love playing with them!)

Steve Mould published a nice video about the Chladni figures used (or adapted) in the new Lord of the Rings TV series’ title sequence.

The Simons institute has been doing a workshop on graph limits, which aims to cover some of the theory about things like low-rank matrix completion, random graphs, and various models of networks. Their lectures are posted on their YouTube page.

Peter Rowlett shared a nice activity with his son about distinct colorings of a square divided into four triangular regions.

Krystal Guo showed off her approach to LiveTeX’ing lectures.

Tamás Görbe gave a nice thread about a function that enumerates all rational numbers exactly once.

Every math club leader should be called the Prime Minister.

In doing research for my book, I was writing a chapter on balanced incomplete block designs, and I found a few nice tidbits in threads (thread 1, thread 2). A few here: Latin squares were on Islamic amulets from the 1200’s. The entire back catalog of “The Mathematical Scientist” journal is available on Google Drive, and through it I found an old article describing the very first use of Latin squares for experimental design, in which a man ran an experiment on what crop was best to feed his sheep during the winter months in France in the 1800’s. Finally, I determined that NFL season scheduling is done via integer linear programming.

## Math Bloggers

Lúcás Meier published a nice article at the end of August (which I only discovered in September, it counts!) going over the details of his favorite cryptography paper “Unifying Zero-Knowledge Proofs of Knowledge”, by Ueli Maurer, which gives a single zero-knowledge protocol that generalizes Schnorr, Fiat-Shamir, and a few others for proving knowledge of logarithms and roots.

Ralph Levien published a blog post about how to efficiently draw a decent approximation to the curve parallel to a given cubic Bezier curve. He has a previous blog post about fitting cubic Beziers to data, and a variety of other interesting graphics-inspired math articles in between articles about Rust and GPUs.

Want to respond? Send me an email, post a webmention, or find me elsewhere on the internet.